The transesterification during the melt blending of polylactide (PLA) and poly(butylene adipate-coterephthalate) (PBAT) was investigated in presence of Ti(OBu)4 as a catalyst. Both the effect of catalyst concentration and reaction duration was considered. The process was studied by analyzing the molecular weight of the polyesters by size exclusion chromatography (SEC). The rheological, thermal and morphological properties of the blends were investigated by melt flow rate, DSC and SEM analyses, respectively. Evidences about the formation of PBAT-PLA copolymers were obtained and discussed. The tensile properties of compression moulded films were also determined and correlated to the structure and phase morphology development of the blends. In particular, the use of Ti(OBu)4 resulted in the improvement of compatibility. Moreover, the decrease in stiffness and the increase in elongation at break with the increase of mixing time was observed, in good agreement with the improved compatibility of the modified blend.
Compatible blends of biorelated polyesters through catalytic transesterification in the melt
COLTELLI, MARIA BEATRICE;CIARDELLI, FRANCESCO;BRONCO, SIMONA
2011-01-01
Abstract
The transesterification during the melt blending of polylactide (PLA) and poly(butylene adipate-coterephthalate) (PBAT) was investigated in presence of Ti(OBu)4 as a catalyst. Both the effect of catalyst concentration and reaction duration was considered. The process was studied by analyzing the molecular weight of the polyesters by size exclusion chromatography (SEC). The rheological, thermal and morphological properties of the blends were investigated by melt flow rate, DSC and SEM analyses, respectively. Evidences about the formation of PBAT-PLA copolymers were obtained and discussed. The tensile properties of compression moulded films were also determined and correlated to the structure and phase morphology development of the blends. In particular, the use of Ti(OBu)4 resulted in the improvement of compatibility. Moreover, the decrease in stiffness and the increase in elongation at break with the increase of mixing time was observed, in good agreement with the improved compatibility of the modified blend.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.