We give a precise definition and produce a path-integral computation of the normalized partition function of the Abelian U(1) Chern-Simons field theory defined in a general closed oriented 3-manifold. We use the Deligne- Beilinson formalism, we sum over the inequivalent U(1) principal bundles over the manifold and, for each bundle, we integrate over the gauge orbits of the associated connection 1-forms. The result of the functional integration is compared with the Abelian U(1) Reshetikhin-Turaev surgery invariant.

Three-manifold invariant from functional integration

GUADAGNINI, ENORE;
2013

Abstract

We give a precise definition and produce a path-integral computation of the normalized partition function of the Abelian U(1) Chern-Simons field theory defined in a general closed oriented 3-manifold. We use the Deligne- Beilinson formalism, we sum over the inequivalent U(1) principal bundles over the manifold and, for each bundle, we integrate over the gauge orbits of the associated connection 1-forms. The result of the functional integration is compared with the Abelian U(1) Reshetikhin-Turaev surgery invariant.
Guadagnini, Enore; Thuillier, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/305140
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact