Background: Gadolinium (Gd) neutron capture therapy (GdNCT) is based on a neutron capture reaction (NCR) that involves emission of both short and long range products. The aim of this study was to investigate both the microscopic and macroscopic contributions of the absorbed dose involved in GdNCT. Methods: Cylindrical containers with diameters 1e30 mm filled with a solution of Gd were irradiated with epithermal neutrons. The background neutron dose as well as the prompt gamma dose has been calculated and measured by means of film dosimetry for the largest cylinder. Monte Carlo codes MCNP5(b) and GEANT4 have been utilized for calculation the absorbed dose. Results and discussion: Results from the film dosimetry are in agreement with the calculations for high doses while for low doses the measured values are higher than the calculated results. For the largest cylinder, the prompt gamma dose from GdNCR neutron is at least five times higher than the background dose. For a cell cluster model, in the first 0.1 mm the major contribution to the absorbed dose is from IC electrons. If Gd atoms were homogeneously distributed in the nuclei of all tumour cells, capture events between neutron and Gd atoms close to DNA could kill the tumour cells and give cross-fire dose from IC electrons to the cells located in the 0.1 mm range. Conclusions: For a correct GdNCT dosimetry both microscopic part of the dose delivered by short-range low energy electrons and macroscopic part delivered by the prompt gamma should be considered.

Dosimetry for gadolinium neutron capture therapy (GdNCT)

GIUSTI, VALERIO;
2013-01-01

Abstract

Background: Gadolinium (Gd) neutron capture therapy (GdNCT) is based on a neutron capture reaction (NCR) that involves emission of both short and long range products. The aim of this study was to investigate both the microscopic and macroscopic contributions of the absorbed dose involved in GdNCT. Methods: Cylindrical containers with diameters 1e30 mm filled with a solution of Gd were irradiated with epithermal neutrons. The background neutron dose as well as the prompt gamma dose has been calculated and measured by means of film dosimetry for the largest cylinder. Monte Carlo codes MCNP5(b) and GEANT4 have been utilized for calculation the absorbed dose. Results and discussion: Results from the film dosimetry are in agreement with the calculations for high doses while for low doses the measured values are higher than the calculated results. For the largest cylinder, the prompt gamma dose from GdNCR neutron is at least five times higher than the background dose. For a cell cluster model, in the first 0.1 mm the major contribution to the absorbed dose is from IC electrons. If Gd atoms were homogeneously distributed in the nuclei of all tumour cells, capture events between neutron and Gd atoms close to DNA could kill the tumour cells and give cross-fire dose from IC electrons to the cells located in the 0.1 mm range. Conclusions: For a correct GdNCT dosimetry both microscopic part of the dose delivered by short-range low energy electrons and macroscopic part delivered by the prompt gamma should be considered.
2013
Enger, Sa; Giusti, Valerio; Fortin, M; Lundqvist, H; Munck af Rosenschold, P.
File in questo prodotto:
File Dimensione Formato  
Dosimetry_for_GdNCT.pdf

Open Access dal 02/01/2016

Descrizione: Versione post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 785.98 kB
Formato Adobe PDF
785.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/328471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact