Complex braid groups are the natural generalizations of braid groups associated to arbitrary (finite) complex reflection groups. We investigate several methods for computing the homology of these groups. In particular, we get the Poincaré polynomial with coefficients in a finite field for one large series of such groups, and compute the second integral cohomology group for all of them. As a consequence we get non-isomorphism results for these groups.
Homology computations for complex braid groups
CALLEGARO, FILIPPO GIANLUCA;
2014-01-01
Abstract
Complex braid groups are the natural generalizations of braid groups associated to arbitrary (finite) complex reflection groups. We investigate several methods for computing the homology of these groups. In particular, we get the Poincaré polynomial with coefficients in a finite field for one large series of such groups, and compute the second integral cohomology group for all of them. As a consequence we get non-isomorphism results for these groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2014jems.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.