Complex braid groups are the natural generalizations of braid groups associated to arbitrary (finite) complex reflection groups. We investigate several methods for computing the homology of these groups. In particular, we get the Poincaré polynomial with coefficients in a finite field for one large series of such groups, and compute the second integral cohomology group for all of them. As a consequence we get non-isomorphism results for these groups.
Autori interni: | |
Autori: | Callegaro, FILIPPO GIANLUCA; Ivan, Marin |
Titolo: | Homology computations for complex braid groups |
Anno del prodotto: | 2014 |
Digital Object Identifier (DOI): | 10.4171/JEMS/429 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2014jems.pdf | articolo | Documento in Post-print | Tutti i diritti riservati (All rights reserved) | Open AccessVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.