In this paper, improving on results of Abramovich, Harris, Debarre and Fahlaoui [1,8], we give the full classification of curves C of genus g such that a Brill-Noether locus Wds(C), strictly contained in the jacobian J(C) of C, contains a variety Z stable under translations by the elements of a positive dimensional abelian subvariety A {subset of with not equal to} J(C) and such that dim(Z) = d - dim(A) - 2. s, i.e., the maximum possible for such a Z.
Abelian varieties in Brill-Noether loci
PARDINI, RITA
2014-01-01
Abstract
In this paper, improving on results of Abramovich, Harris, Debarre and Fahlaoui [1,8], we give the full classification of curves C of genus g such that a Brill-Noether locus Wds(C), strictly contained in the jacobian J(C) of C, contains a variety Z stable under translations by the elements of a positive dimensional abelian subvariety A {subset of with not equal to} J(C) and such that dim(Z) = d - dim(A) - 2. s, i.e., the maximum possible for such a Z.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Pardini_376867.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
293.94 kB
Formato
Adobe PDF
|
293.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AbSub8.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
263.67 kB
Formato
Adobe PDF
|
263.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.