In this paper, improving on results of Abramovich, Harris, Debarre and Fahlaoui [1,8], we give the full classification of curves C of genus g such that a Brill-Noether locus Wds(C), strictly contained in the jacobian J(C) of C, contains a variety Z stable under translations by the elements of a positive dimensional abelian subvariety A {subset of with not equal to} J(C) and such that dim(Z) = d - dim(A) - 2. s, i.e., the maximum possible for such a Z.

Abelian varieties in Brill-Noether loci

PARDINI, RITA
2014-01-01

Abstract

In this paper, improving on results of Abramovich, Harris, Debarre and Fahlaoui [1,8], we give the full classification of curves C of genus g such that a Brill-Noether locus Wds(C), strictly contained in the jacobian J(C) of C, contains a variety Z stable under translations by the elements of a positive dimensional abelian subvariety A {subset of with not equal to} J(C) and such that dim(Z) = d - dim(A) - 2. s, i.e., the maximum possible for such a Z.
2014
Ciliberto, C.; Mendes Lopes, M.; Pardini, Rita
File in questo prodotto:
File Dimensione Formato  
Pardini_376867.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 293.94 kB
Formato Adobe PDF
293.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
AbSub8.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 263.67 kB
Formato Adobe PDF
263.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/376867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact