Hyper-proliferation and migration of vascular smooth muscle cells and endothelial cell dysfunction are central events in the development of neo-intimal lesions. Pursuing our interest in the synthesis of bioisosters of flavonoids, we studied in depth a novel synthetic 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative, examining its effects in vitro on induced-cell proliferation and activation in human aortic smooth muscle cells (HAoSMCs) and in human umbilical vein endothelial cells (HUVECs). Compared with two well known flavonoids, apigenin and quercetin, the novel compound, 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one, 3, was not toxic for HUVECs, even at high concentrations and for long incubation times, while the two flavonoids were not tolerated, even at concentrations as low as 10 μmol/L. Compound 3 inhibited selectively, and in a concentration-dependent manner, the proliferation of HAoSMCs but not that of HUVECs. In HUVECs, it inhibited the cytokine-induced vascular cell adhesion molecule-1 expression, but not the cyclooxygenase-2 (COX-2) expression. Instead, in HAoSMC, it inhibited the induction of COX-2 expression and the relative release of prostaglandin E2. In addition, it inhibited the transcription of the matrix metalloproteinase-9 and its activity. Thanks to its multiple and tissue-specific function, 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one might replace or assist the action of current drugs eluted by coronary stents, in order to promote a functional repair of damaged wall.

A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation

SARTINI, STEFANIA
Secondo
;
DA SETTIMO PASSETTI, FEDERICO;LA MOTTA, CONCETTINA
Penultimo
;
2014-01-01

Abstract

Hyper-proliferation and migration of vascular smooth muscle cells and endothelial cell dysfunction are central events in the development of neo-intimal lesions. Pursuing our interest in the synthesis of bioisosters of flavonoids, we studied in depth a novel synthetic 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative, examining its effects in vitro on induced-cell proliferation and activation in human aortic smooth muscle cells (HAoSMCs) and in human umbilical vein endothelial cells (HUVECs). Compared with two well known flavonoids, apigenin and quercetin, the novel compound, 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one, 3, was not toxic for HUVECs, even at high concentrations and for long incubation times, while the two flavonoids were not tolerated, even at concentrations as low as 10 μmol/L. Compound 3 inhibited selectively, and in a concentration-dependent manner, the proliferation of HAoSMCs but not that of HUVECs. In HUVECs, it inhibited the cytokine-induced vascular cell adhesion molecule-1 expression, but not the cyclooxygenase-2 (COX-2) expression. Instead, in HAoSMC, it inhibited the induction of COX-2 expression and the relative release of prostaglandin E2. In addition, it inhibited the transcription of the matrix metalloproteinase-9 and its activity. Thanks to its multiple and tissue-specific function, 2-(3,4-dimethoxyphenyl)-3-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one might replace or assist the action of current drugs eluted by coronary stents, in order to promote a functional repair of damaged wall.
2014
Serena Del, Turco; Sartini, Stefania; Cassandra, Sentieri; Chiara, Saponaro; Teresa, Navarra; Bianca, Dario; DA SETTIMO PASSETTI, Federico; LA MOTTA, Concettina; Giuseppina, Basta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/434470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact