Background: Reconstruction methods for Non-Cartesian magnetic resonance imaging have often been analyzed using the root mean square error (RMSE). However, RMSE is not able to measure the level of structured error associated with the reconstruction process. Methods: An index for geometric information loss was presented using the 2D autocorrelation function. The performances of Least Squares Non Uniform Fast Fourier Transform (LS-NUFFT) and gridding reconstruction (GR) methods were compared. The Direct Summation method (DS) was used as reference. For both methods, RMSE and the loss in geometric information were calculated using a digital phantom and a hyperpolarized (13)C dataset. Results: The performance of the geometric information loss index was analyzed in the presence of noise. Comparing to GR, LS-NUFFT obtained a lower RMSE, but its error image appeared more structured. This was observed in both phantom and in vivo experiments. Discussion: The evaluation of geometric information loss together with the reconstruction error was important for an appropriate performance analysis of the reconstruction methods. The use of geometric information loss was helpful to determine that LS-NUFFT loses relevant information in the reconstruction process, despite the low RMSE.

Structured errors in reconstruction methods for Non-Cartesian MR data

LANDINI, LUIGI;
2013-01-01

Abstract

Background: Reconstruction methods for Non-Cartesian magnetic resonance imaging have often been analyzed using the root mean square error (RMSE). However, RMSE is not able to measure the level of structured error associated with the reconstruction process. Methods: An index for geometric information loss was presented using the 2D autocorrelation function. The performances of Least Squares Non Uniform Fast Fourier Transform (LS-NUFFT) and gridding reconstruction (GR) methods were compared. The Direct Summation method (DS) was used as reference. For both methods, RMSE and the loss in geometric information were calculated using a digital phantom and a hyperpolarized (13)C dataset. Results: The performance of the geometric information loss index was analyzed in the presence of noise. Comparing to GR, LS-NUFFT obtained a lower RMSE, but its error image appeared more structured. This was observed in both phantom and in vivo experiments. Discussion: The evaluation of geometric information loss together with the reconstruction error was important for an appropriate performance analysis of the reconstruction methods. The use of geometric information loss was helpful to determine that LS-NUFFT loses relevant information in the reconstruction process, despite the low RMSE.
2013
Gibiino, F; Positano, V; Wiesinger, F; Giovannetti, G; Landini, Luigi; Santarelli, Mf
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/444468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact