Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work describes the simulations and the tests of a transmit-only (TX) volume coil/receive-only (RX) surface coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model for coil performance in terms of coil resistance, sample-induced resistance and magnetic field pattern. In particular, coil resistances were calculated from Ohm’s law, while magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. Experimental phantom chemical shift image, showed good agreement with the theoretical SNR-vs-depth profiles and highlighted the advantage of the novel configuration over the single transmit–receive coils throughout the volume of interest for cardiac imaging in pig. Finally, the TX-birdcage/RX-circular configuration was tested by acquiring metabolic maps with hyperpolarized [1-13C] pyruvate injected i.v. in a pig. The results of the phantom and pig experiments show the ability of the coil configuration to image well the metabolites distribution.

Transmit-Only/Receive-Only Radiofrequency System for Hyperpolarized C-13 MRS Cardiac Metabolism Studies in Pigs

LANDINI, LUIGI;
2013-01-01

Abstract

Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work describes the simulations and the tests of a transmit-only (TX) volume coil/receive-only (RX) surface coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model for coil performance in terms of coil resistance, sample-induced resistance and magnetic field pattern. In particular, coil resistances were calculated from Ohm’s law, while magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm. Experimental phantom chemical shift image, showed good agreement with the theoretical SNR-vs-depth profiles and highlighted the advantage of the novel configuration over the single transmit–receive coils throughout the volume of interest for cardiac imaging in pig. Finally, the TX-birdcage/RX-circular configuration was tested by acquiring metabolic maps with hyperpolarized [1-13C] pyruvate injected i.v. in a pig. The results of the phantom and pig experiments show the ability of the coil configuration to image well the metabolites distribution.
2013
Giovannetti, G; Frijia, F; Hartwig, V; Menichetti, L; Positano, V; Ardenkjaer Larsen, Jh; Lionetti, V; Aquaro, Gd; De Marchi, D; Schulte, Rf; Wiesinger, F; Landini, Luigi; Lombardi, M; Santarelli, Mf
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/444470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact