This paper derives the 'constrained' maximum likelihood (ML) estimators and the Cramér-Rao Lower Bounds (CRLB) for the scatter matrix of Complex Elliptically Symmetric distributions and compares them in the particular cases of complex Gaussian, Generalized Gaussian (GG) and t-distributed observation vectors. Numerical results confirm the goodness of the ML estimators and the advantage of a constraint on the matrix trace for small data size.

ML Estimate and CRLB of Covariance Matrix for Complex Elliptically Symmetric Distribution

GRECO, MARIA;GINI, FULVIO;
2013

Abstract

This paper derives the 'constrained' maximum likelihood (ML) estimators and the Cramér-Rao Lower Bounds (CRLB) for the scatter matrix of Complex Elliptically Symmetric distributions and compares them in the particular cases of complex Gaussian, Generalized Gaussian (GG) and t-distributed observation vectors. Numerical results confirm the goodness of the ML estimators and the advantage of a constraint on the matrix trace for small data size.
978-099286260-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/457269
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact