We consider the three dimensional Navier-Stokese quations and we prove that weak solutions constructed by approximating the time-derivative by finite differences are suitable. The so-called method of semi-discretization is of fundamental importance in the numerical analysis and it is one of the basic building blocks for the full discretization of the equations.

Weak solution to the Navier-Stokes equations constructed by semi-discretization are suitable

BERSELLI, LUIGI CARLO;
2016

Abstract

We consider the three dimensional Navier-Stokese quations and we prove that weak solutions constructed by approximating the time-derivative by finite differences are suitable. The so-called method of semi-discretization is of fundamental importance in the numerical analysis and it is one of the basic building blocks for the full discretization of the equations.
Berselli, LUIGI CARLO; Stefano, Spirito
File in questo prodotto:
File Dimensione Formato  
berselli-spirito.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 318.45 kB
Formato Adobe PDF
318.45 kB Adobe PDF Visualizza/Apri
CONM2016.pdf

solo utenti autorizzati

Descrizione: versione editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 264.13 kB
Formato Adobe PDF
264.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/460279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact