Competitive Repetition-suppression (CoRe) clustering is a bio-inspired learning algorithm that is capable of automatically determining the unknown cluster number from the data. In a previous work it has been shown how CoRe clustering represents a robust generalization of rival penalized competitive learning (RPCL) by means of M-estimators. This paper studies the convergence behavior of the CoRe model, based on the analysis proposed for the distance-sensitive RPCL (DSRPCL) algorithm. Furthermore, it is proposed a global minimum criterion for learning vector quantization in kernel space that is used to assess the correct location property for the CoRe algorithm.
Convergence Behavior of Competitive Repetition-Suppression Clustering
BACCIU, DAVIDE;STARITA, ANTONINA
2008-01-01
Abstract
Competitive Repetition-suppression (CoRe) clustering is a bio-inspired learning algorithm that is capable of automatically determining the unknown cluster number from the data. In a previous work it has been shown how CoRe clustering represents a robust generalization of rival penalized competitive learning (RPCL) by means of M-estimators. This paper studies the convergence behavior of the CoRe model, based on the analysis proposed for the distance-sensitive RPCL (DSRPCL) algorithm. Furthermore, it is proposed a global minimum criterion for learning vector quantization in kernel space that is used to assess the correct location property for the CoRe algorithm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.