We study, by means of embeddings of Hilbert functions, a class of rings which we call Shakin rings, i.e. quotients $K[X_1, . . . , X_n]/a$ of a polynomial ring over a field K by ideals a=$L+P$ which are the sum of a piecewise lex-segment ideal $L$, as defined by Shakin, and a pure powers ideal $P$. Our main results extend Abedelfatah’s recent work on the Eisenbud-Green-Harris Conjecture, Shakin’s generalization of Macaulay and Bigatti-Hulett-Pardue Theorems on Betti numbers and, when $char(K) = 0$, Mermin-Murai Theorem on the Lex-Plus-Power inequality, from monomial regular sequences to a larger class of ideals. We also prove an extremality property of embeddings induced by distractions in terms of Hilbert functions of local cohomology modules.

Distractions of Shakin rings

SBARRA, ENRICO;
2014

Abstract

We study, by means of embeddings of Hilbert functions, a class of rings which we call Shakin rings, i.e. quotients $K[X_1, . . . , X_n]/a$ of a polynomial ring over a field K by ideals a=$L+P$ which are the sum of a piecewise lex-segment ideal $L$, as defined by Shakin, and a pure powers ideal $P$. Our main results extend Abedelfatah’s recent work on the Eisenbud-Green-Harris Conjecture, Shakin’s generalization of Macaulay and Bigatti-Hulett-Pardue Theorems on Betti numbers and, when $char(K) = 0$, Mermin-Murai Theorem on the Lex-Plus-Power inequality, from monomial regular sequences to a larger class of ideals. We also prove an extremality property of embeddings induced by distractions in terms of Hilbert functions of local cohomology modules.
Sbarra, Enrico; Caviglia, G.
File in questo prodotto:
File Dimensione Formato  
Shakin-JAlg.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 420.41 kB
Formato Adobe PDF
420.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Shakin.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 216.7 kB
Formato Adobe PDF
216.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/474268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact