We examine in this paper how van Hove critical points, in a given density-of-states distribution, modify the asymptotic behavior of the corresponding continued-fraction coefficients. Singularities within and at the boundary of a single connected band are discussed in detail, for one-, two-, and three-dimensional structures, in a simple and comprehensive way.

CONTINUED-FRACTION COEFFICIENTS IN THE PRESENCE OF CRITICAL-POINTS

GROSSO, GIUSEPPE;
1985

Abstract

We examine in this paper how van Hove critical points, in a given density-of-states distribution, modify the asymptotic behavior of the corresponding continued-fraction coefficients. Singularities within and at the boundary of a single connected band are discussed in detail, for one-, two-, and three-dimensional structures, in a simple and comprehensive way.
Grosso, Giuseppe; PASTORI PARRAVICINI, G; Testa, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/4775
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact