We study the pointwise convergence and the Gamma-convergence of a family of nonlocal functionals defined in L^1_loc(R^n) to a local functional F(u) that depends on the gradient of u and on the set of discontinuity points of u. We apply this result to approximate a minimum problem introduced by Mumford and Shah to study edge detection in computer vision theory.

Finite difference approximation of the Mumford-Shah functional

GOBBINO, MASSIMO
1998-01-01

Abstract

We study the pointwise convergence and the Gamma-convergence of a family of nonlocal functionals defined in L^1_loc(R^n) to a local functional F(u) that depends on the gradient of u and on the set of discontinuity points of u. We apply this result to approximate a minimum problem introduced by Mumford and Shah to study edge detection in computer vision theory.
1998
Gobbino, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/47845
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 78
social impact