We consider the initial-boundary value problem for a linear thermoelastic material characterized by Cattaneo-Maxwell's constitutive equation for the heat flux. We prove existence and uniqueness theorems for weak and strong solutions of the evolutive problem. Moreover, the dissipative effects of Cattaneo-Maxwell's relation allow us to prove, for the unidimensional model, the exponential decay of the energy associated to the system.

Stability and energy decay rates in thermoelasticity

AMENDOLA, GIOVAMBATTISTA;
1998

Abstract

We consider the initial-boundary value problem for a linear thermoelastic material characterized by Cattaneo-Maxwell's constitutive equation for the heat flux. We prove existence and uniqueness theorems for weak and strong solutions of the evolutive problem. Moreover, the dissipative effects of Cattaneo-Maxwell's relation allow us to prove, for the unidimensional model, the exponential decay of the energy associated to the system.
Amendola, Giovambattista; Lazzari, Barbara
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/47925
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact