We evaluate the performance of a hand-held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe-Ni-rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non-destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.
Chemical analysis of iron meteorites using a hand-held X-ray fluorescence spectrometer
GEMELLI, MAURIZIO;D'ORAZIO, MASSIMO;FOLCO, LUIGI
2015-01-01
Abstract
We evaluate the performance of a hand-held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe-Ni-rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non-destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.File | Dimensione | Formato | |
---|---|---|---|
Gemelli_et_al-2015-Geostandards_and_Geoanalytical_Research.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Chemical analysis of iron meteorites_1.PDF
Open Access dal 01/04/2016
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.