We evaluate the performance of a hand-held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe-Ni-rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non-destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.

Chemical analysis of iron meteorites using a hand-held X-ray fluorescence spectrometer

GEMELLI, MAURIZIO;D'ORAZIO, MASSIMO;FOLCO, LUIGI
2015

Abstract

We evaluate the performance of a hand-held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe-Ni-rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non-destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.
Gemelli, Maurizio; D'Orazio, Massimo; Folco, Luigi
File in questo prodotto:
File Dimensione Formato  
Gemelli_et_al-2015-Geostandards_and_Geoanalytical_Research.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Chemical analysis of iron meteorites_1.PDF

embargo fino al 31/03/2016

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/488468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact