Abstract: We prove that the stable manifold of every point in a compact hyperbolic invariant set of a holomorphic automorphism of a complex manifold is biholomorphic to a complex vector space, provided that a bunching condition, which is weaker than the classical bunching condition for linearizability, holds.

Global stable manifolds in holomorphic dynamics under bunching conditions

MAJER, PIETRO
2013-01-01

Abstract

Abstract: We prove that the stable manifold of every point in a compact hyperbolic invariant set of a holomorphic automorphism of a complex manifold is biholomorphic to a complex vector space, provided that a bunching condition, which is weaker than the classical bunching condition for linearizability, holds.
2013
Abbondandolo, A.; Majer, Pietro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/498302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact