We prove that the non-squeezing theorem of Gromov holds for symplectomor- phisms on an infinite-dimensional symplectic Hilbert space, under the assumption that the image of the ball is convex. The proof is based on the construction by dual- ity methods of a symplectic capacity for bounded convex neighbourhoods of the ori- gin. We also discuss some examples of symplectomorphisms on infinite-dimensional spaces exhibiting behaviours which would be impossible in finite dimensions.
Autori interni: | |
Autori: | Abbondandolo A.; Majer P. |
Titolo: | A non-squeezing theorem for convex symplectic images of the Hilbert ball |
Anno del prodotto: | 2015 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.