We report in this article a way to compute analytical derivatives for geometry optimization in solvation continuum models. This method can be applied to Molecular Mechanics as well as Quantum Chemistry calculations and is both simpler to implement and more powerful than other derivation methods used so far. Extensions to the cases when the solvent is either an ionic solution described by the linearized Poisson–Boltzmann equation or an anisotropic medium with a tensorial dielectric permittivity are discussed.
Analytical Derivatives for Geometry Optimization in Solvation Continuum Models I: Theory
MENNUCCI, BENEDETTA
1998-01-01
Abstract
We report in this article a way to compute analytical derivatives for geometry optimization in solvation continuum models. This method can be applied to Molecular Mechanics as well as Quantum Chemistry calculations and is both simpler to implement and more powerful than other derivation methods used so far. Extensions to the cases when the solvent is either an ionic solution described by the linearized Poisson–Boltzmann equation or an anisotropic medium with a tensorial dielectric permittivity are discussed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.