An increasing flow of evidences collected on elementary forms of learning processes in selected animal models evidentiates some mechanisms which can represent the basic cellular principles underlying plastic changes: 1. 5HT and second messengers of nucleotide type (like cAMP) have a pivotal role in the learning process. 2. In almost all short-term learning processes the modifications are subserved by a mechanism of protein phosphorylation. 3. In various animal models the modulation of K+ and Ca2+ channels is the molecular mechanism for learning. Experiments performed in sensory T neuron of the leech indicate that the modulation of Na+/K+ electrogenic pump is one of the fundamental mechanism for learning. 4. In long-term plastic changes, the most important finding is that newly synthesized proteins are formed. 5. In addition to what has been observed in the Aplysia model, where changes in synaptic efficacy represent the basic principles of memory storage, in the leech it has been demonstrated that a molecular machinery present in a single neuron can adapt the activity of the cell to environmental stimuli.

Neurobiological principles of learning and memory.

GARCIA GIL, MARIA de las MERCEDES;SCURI, ROSSANA;
1997-01-01

Abstract

An increasing flow of evidences collected on elementary forms of learning processes in selected animal models evidentiates some mechanisms which can represent the basic cellular principles underlying plastic changes: 1. 5HT and second messengers of nucleotide type (like cAMP) have a pivotal role in the learning process. 2. In almost all short-term learning processes the modifications are subserved by a mechanism of protein phosphorylation. 3. In various animal models the modulation of K+ and Ca2+ channels is the molecular mechanism for learning. Experiments performed in sensory T neuron of the leech indicate that the modulation of Na+/K+ electrogenic pump is one of the fundamental mechanism for learning. 4. In long-term plastic changes, the most important finding is that newly synthesized proteins are formed. 5. In addition to what has been observed in the Aplysia model, where changes in synaptic efficacy represent the basic principles of memory storage, in the leech it has been demonstrated that a molecular machinery present in a single neuron can adapt the activity of the cell to environmental stimuli.
1997
Brunelli, M.; GARCIA GIL, MARIA de las MERCEDES; Mozzachiodi, R.; Scuri, Rossana; Zaccardi, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/54077
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact