The current need to reduce emissions from air traffic leads to a rapid transition from ponderous and squandering to lightweight and energy efficient aircraft. Within this development many aircraft systems are electrified in order to eliminate pneumatic and hydraulic power sources. Furthermore, not having to bleed air from the engine compressor increases engine efficiency and the removal of hydraulic fluid contributes to reduce the environmental impact. Such an aircraft design requires all on-board systems be electric and share a common power source. This necessitates evaluating the electrical performance of the complete aircraft system in order to correctly specify generators, distribution networks and algorithms to reliably manage the distribution of electrical power in various load cases. To test and validate said energy management, static and dynamic performances of on-board systems need to be assessed with particular focus on electrical loads. These measures must be done early in the design process, ideally through simulations. However, different subsystems are often implemented in various simulation environments, each specifically suited to the task at hand. Consequently, the evaluation of the entire aircraft system requires a shared simulation environment (SSE) integrating individual sub-systems. For this purpose, we have developed detailed models of different on-board systems (EBird project) as well as an SSE connecting the different components (iSSE project). This work was performed within the framework of the CleanSky Green Regional Aircraft (GRA) research programme.

Co-Simulation for Design, Optimization and Analysis of All-Electric Aircraft Systems

SCHETTINI, FRANCESCO;DENTI, EUGENIO;DI RITO, GIANPIETRO;GALATOLO, ROBERTO;
2013-01-01

Abstract

The current need to reduce emissions from air traffic leads to a rapid transition from ponderous and squandering to lightweight and energy efficient aircraft. Within this development many aircraft systems are electrified in order to eliminate pneumatic and hydraulic power sources. Furthermore, not having to bleed air from the engine compressor increases engine efficiency and the removal of hydraulic fluid contributes to reduce the environmental impact. Such an aircraft design requires all on-board systems be electric and share a common power source. This necessitates evaluating the electrical performance of the complete aircraft system in order to correctly specify generators, distribution networks and algorithms to reliably manage the distribution of electrical power in various load cases. To test and validate said energy management, static and dynamic performances of on-board systems need to be assessed with particular focus on electrical loads. These measures must be done early in the design process, ideally through simulations. However, different subsystems are often implemented in various simulation environments, each specifically suited to the task at hand. Consequently, the evaluation of the entire aircraft system requires a shared simulation environment (SSE) integrating individual sub-systems. For this purpose, we have developed detailed models of different on-board systems (EBird project) as well as an SSE connecting the different components (iSSE project). This work was performed within the framework of the CleanSky Green Regional Aircraft (GRA) research programme.
2013
9783942939102
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/543668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact