Detection of incipient slippage is of great importance in robotics for the control of grasping and manipulation tasks. Together with fine-form reconstruction and primitive recognition, it has to be the main feature of an artificial tactile system. The system presented here is based on a neural network used to detect incipient slippage and on a skin-like sensor sensible to normal and shear stresses. Normal and shear stresses components inside the sensor are the input data of the neural net. An important feature of the system is that the a priori knowledge of the friction coefficient between the sensor and the object being manipulated is not needed. To validate the method we worked on both simulated and experimental data. In the first case, the finite element method is used to solve the direct problem of elastic contact in its full nonlinearity by resorting to the lowest number of approximations regarding the real problem. Simulation has shown that the network learns and is robust to noise. Then an experimental test was carried out. Experimental results show that, in a simple case, the method is able to detect the insipiency of slippage between an object and the sensor.

Detection of incipient object slippage by skin-like sensing and neural network processing

DE ROSSI, DANILO EMILIO
1998-01-01

Abstract

Detection of incipient slippage is of great importance in robotics for the control of grasping and manipulation tasks. Together with fine-form reconstruction and primitive recognition, it has to be the main feature of an artificial tactile system. The system presented here is based on a neural network used to detect incipient slippage and on a skin-like sensor sensible to normal and shear stresses. Normal and shear stresses components inside the sensor are the input data of the neural net. An important feature of the system is that the a priori knowledge of the friction coefficient between the sensor and the object being manipulated is not needed. To validate the method we worked on both simulated and experimental data. In the first case, the finite element method is used to solve the direct problem of elastic contact in its full nonlinearity by resorting to the lowest number of approximations regarding the real problem. Simulation has shown that the network learns and is robust to noise. Then an experimental test was carried out. Experimental results show that, in a simple case, the method is able to detect the insipiency of slippage between an object and the sensor.
1998
G., Canepa; R., Petrigliano; M., Campanella; DE ROSSI, DANILO EMILIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/55884
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact