Thanks to their flexibility and compact characterization, Gaussian processes have emerged as popular models to describe the traffic dynamics in a wide class of the modern telecommunication networks. A relatively new characterization of traffic flows is based on the effective envelopes, which represent a probabilistic generalization of the arrival curve of Network Calculus. In this paper, we analyse the effective envelopes for a general Gaussian process and use these results to derive non-asymptotic performance bounds for a fluid queuing system. To highlight the effectiveness of the proposed approach, numerical results are shown taking into account heterogeneous traffic flows as well as different correlation structures

On the Effective Envelopes for Fluid Queues with Gaussian Input

PAGANO, MICHELE
2014-01-01

Abstract

Thanks to their flexibility and compact characterization, Gaussian processes have emerged as popular models to describe the traffic dynamics in a wide class of the modern telecommunication networks. A relatively new characterization of traffic flows is based on the effective envelopes, which represent a probabilistic generalization of the arrival curve of Network Calculus. In this paper, we analyse the effective envelopes for a general Gaussian process and use these results to derive non-asymptotic performance bounds for a fluid queuing system. To highlight the effectiveness of the proposed approach, numerical results are shown taking into account heterogeneous traffic flows as well as different correlation structures
2014
Oleg, Lukashenko; Evsey, Morozov; Pagano, Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/579868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact