This paper presents a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites. The proposed device adds to the state-of-the-art EO TT&C transponders the possibility of scientific data transfer thanks to the high downlink datarate (up to 40 Mbps) and in-flight reconfigurability via Telecomand (TC). The integration of these features in one single device represents a considerable optimization in terms of mass budget, which is important for EO small satellites. Furthermore, in-flight reconfigurability of communication parameters via TC is important for in-orbit link optimization, which is especially useful for Low-Earth Orbit (LEO) satellites where visibility can be as short as few hundreds of seconds. The proposed transponder is a digital radio unit working at 70MHz intermediate frequency (IF). A new custom and configurable hardware accelerator was developed to cover intensive radio DSP functions at IF. The custom hardware is integrated in a single FPGA with a space-compliant processor core, for control, conFIguration and interface with the other satellite subsystems. All the quantization parameters were FIne-tailored to reach a trade-off between hardware complexity and implementation loss (IL). The IF RX/TX ports require eight bits and seven bits, respectively. The IL is 0.5 dB at BER = 10(-5) for the RX chain. A system proof-of-concept was implemented on the Xilinx Virtex 6 VLX75T-FF484 FPGA. The total device occupation is 82%. The power consumption of the design fitted in FPGA is less than 2W. The power consumption of the whole demonstrator board is less than 9W.
Design, implementation and testing of a flexible fully-digital transponder for low-earth orbit satellite communications
SAPONARA, SERGIO;FANUCCI, LUCA;
2014-01-01
Abstract
This paper presents a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites. The proposed device adds to the state-of-the-art EO TT&C transponders the possibility of scientific data transfer thanks to the high downlink datarate (up to 40 Mbps) and in-flight reconfigurability via Telecomand (TC). The integration of these features in one single device represents a considerable optimization in terms of mass budget, which is important for EO small satellites. Furthermore, in-flight reconfigurability of communication parameters via TC is important for in-orbit link optimization, which is especially useful for Low-Earth Orbit (LEO) satellites where visibility can be as short as few hundreds of seconds. The proposed transponder is a digital radio unit working at 70MHz intermediate frequency (IF). A new custom and configurable hardware accelerator was developed to cover intensive radio DSP functions at IF. The custom hardware is integrated in a single FPGA with a space-compliant processor core, for control, conFIguration and interface with the other satellite subsystems. All the quantization parameters were FIne-tailored to reach a trade-off between hardware complexity and implementation loss (IL). The IF RX/TX ports require eight bits and seven bits, respectively. The IL is 0.5 dB at BER = 10(-5) for the RX chain. A system proof-of-concept was implemented on the Xilinx Virtex 6 VLX75T-FF484 FPGA. The total device occupation is 82%. The power consumption of the design fitted in FPGA is less than 2W. The power consumption of the whole demonstrator board is less than 9W.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.