Phase-locked multi-terahertz transients map out the full photonic bandstructure of a one-dimensional photonic crystal while a 12-fs control pulse activates ultrastrong interaction on a sub-cycle time scale with quantized electronic transitions in semiconductor quantum wells. We trace the build-up dynamics of a large vacuum Rabi splitting and observe an unexpected asymmetric formation of the upper and lower polariton bands. The pronounced flattening of the photonic bands causes a slow-down of the group velocity by one order of magnitude on the time scale of the oscillation period of light.

Sub-cycle switching of a photonic bandstructure via ultrastrong light-matter coupling

TREDICUCCI, ALESSANDRO
2013-01-01

Abstract

Phase-locked multi-terahertz transients map out the full photonic bandstructure of a one-dimensional photonic crystal while a 12-fs control pulse activates ultrastrong interaction on a sub-cycle time scale with quantized electronic transitions in semiconductor quantum wells. We trace the build-up dynamics of a large vacuum Rabi splitting and observe an unexpected asymmetric formation of the upper and lower polariton bands. The pronounced flattening of the photonic bands causes a slow-down of the group velocity by one order of magnitude on the time scale of the oscillation period of light.
2013
9782759809561
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/589667
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact