The classical moment problem for continued fraction expansion of relaxation functions is surveyed. The theory is then extended to the moment problem associated to relaxation operators or super-operators. Numerical aspects and sensitivity of algorithms to round-off errors are also examined. A new convenient approach is developed exploiting a product-difference recursive scheme, within the memory function formalism.
Autori interni: | |
Autori: | GIANNOZZI P; GROSSO G; PASTORI PARRAVICINI G |
Titolo: | THE CLASSICAL AND GENERALIZED MOMENT PROBLEM IN THE THEORY OF RELAXATION |
Anno del prodotto: | 1985 |
Digital Object Identifier (DOI): | 10.1002/pssb.2221280230 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.