In this paper, the design, fabrication and testing of a 3D printed dry electrode is proposed. 3D printing represents an authentic breakthrough for the development and mass production of dry medical electrodes. In fact, it allows a fast and low cost production of high precision tridimensional shapes. This technique is reliable and efficient, and facilitates controllability over the whole process. Initially, 3D capable design software is used to draw the electrode model. The resulting file is simply loaded in a 3D printer whose resolution is 42 μm on x- and y-axes, and 16 μm on z-axis. The electrode is made by an insulating acrylic-based photopolymer. It consists of 180 conical needles (distance = 250 μm) on a truncated conical base. The metallization process undergoes two steps: sputtering of titanium as adhesion promotion layer and evaporation of gold to lower the impedance and prevent oxidation of the electrode. After electrode characterization, experimental results are presented and compared with planar wet Ag/AgCl electrodes for recording ECG-EEG.

A 3D printed dry electrode for ECG/EEG recording

SALVO, PIETRO;
2012-01-01

Abstract

In this paper, the design, fabrication and testing of a 3D printed dry electrode is proposed. 3D printing represents an authentic breakthrough for the development and mass production of dry medical electrodes. In fact, it allows a fast and low cost production of high precision tridimensional shapes. This technique is reliable and efficient, and facilitates controllability over the whole process. Initially, 3D capable design software is used to draw the electrode model. The resulting file is simply loaded in a 3D printer whose resolution is 42 μm on x- and y-axes, and 16 μm on z-axis. The electrode is made by an insulating acrylic-based photopolymer. It consists of 180 conical needles (distance = 250 μm) on a truncated conical base. The metallization process undergoes two steps: sputtering of titanium as adhesion promotion layer and evaporation of gold to lower the impedance and prevent oxidation of the electrode. After electrode characterization, experimental results are presented and compared with planar wet Ag/AgCl electrodes for recording ECG-EEG.
2012
Salvo, Pietro; Raedt, R.; Carrette, E.; Schaubroeck, D.; Vanfleteren, J.; Cardon, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/607272
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 199
  • ???jsp.display-item.citation.isi??? 178
social impact