A theoretical model for the performance prediction of applied-field magnetoplasmadynamic thrusters (MPDTs) is presented. MPD thrusters have been long regarded as leading candidates for near-term, thrust-demanding missions due to their substantial thrust density and specific impulse even at moderate power levels (50–200 kW). However, the complicated physics behind the acceleration mechanism as well as the challenging on-ground testing have delayed their development and optimization leading to a slow but constant decline of interest in such a technology. Despite several theoretical efforts in the last few decades, no complete and definitive understanding of the scaling relations governing their performance is yet available. In this work, a simple phenomenological model for both the thrust and the terminal voltage is presented and discussed. The validity of the model is then assessed through a systematic comparison with the experimental data available in the literature. It was found that the suggested model can actually capture most of the characteristic features of this class of thrusters within a 20% error for a wide range of operational conditions.

A phenomenological performance model for applied-field MPD thrusters

ALBERTONI, RICCARDO;PAGANUCCI, FABRIZIO;ANDRENUCCI, MARIANO
2014-01-01

Abstract

A theoretical model for the performance prediction of applied-field magnetoplasmadynamic thrusters (MPDTs) is presented. MPD thrusters have been long regarded as leading candidates for near-term, thrust-demanding missions due to their substantial thrust density and specific impulse even at moderate power levels (50–200 kW). However, the complicated physics behind the acceleration mechanism as well as the challenging on-ground testing have delayed their development and optimization leading to a slow but constant decline of interest in such a technology. Despite several theoretical efforts in the last few decades, no complete and definitive understanding of the scaling relations governing their performance is yet available. In this work, a simple phenomenological model for both the thrust and the terminal voltage is presented and discussed. The validity of the model is then assessed through a systematic comparison with the experimental data available in the literature. It was found that the suggested model can actually capture most of the characteristic features of this class of thrusters within a 20% error for a wide range of operational conditions.
2014
Albertoni, Riccardo; Paganucci, Fabrizio; Andrenucci, Mariano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/646667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact