A comprehensive analysis aimed at reducing the radar cross section (RCS) of array antennas, preserving at the same time their radiating performance, is presented. A microstrip slot array is considered as a test case to illustrate the proposed strategy for radar cross section reduction (RCSR). It is shown that a remarkable reduction of the radar signature can be accomplished over a frequency band as wide as two octaves by employing an array of periodic resistive elements in front of the radiating apertures. The monostatic and bistatic RCS of the proposed structures are investigated both for normal and oblique incidence. Different arrangements and geometries of the periodic resistive pattern are thoroughly analyzed showing the benefits and the drawbacks in terms of antenna gain and level of the scattered fields. Furthermore, the use of metallic parasitic elements for enhancing the antenna gain is considered, and the scattering phenomena caused by their presence are addressed, taking into account the appearance of grating lobes. The antenna designs are also analyzed by resorting to a bidimensional color plot presenting the variation of the reradiated field both in frequency and spatial domain. The guidelines illustrated by the proposed examples can be easily applied to other antenna architectures.

Wideband radar cross section reduction of slot antennas arrays

GENOVESI, SIMONE;COSTA, FILIPPO;MONORCHIO, AGOSTINO
2014-01-01

Abstract

A comprehensive analysis aimed at reducing the radar cross section (RCS) of array antennas, preserving at the same time their radiating performance, is presented. A microstrip slot array is considered as a test case to illustrate the proposed strategy for radar cross section reduction (RCSR). It is shown that a remarkable reduction of the radar signature can be accomplished over a frequency band as wide as two octaves by employing an array of periodic resistive elements in front of the radiating apertures. The monostatic and bistatic RCS of the proposed structures are investigated both for normal and oblique incidence. Different arrangements and geometries of the periodic resistive pattern are thoroughly analyzed showing the benefits and the drawbacks in terms of antenna gain and level of the scattered fields. Furthermore, the use of metallic parasitic elements for enhancing the antenna gain is considered, and the scattering phenomena caused by their presence are addressed, taking into account the appearance of grating lobes. The antenna designs are also analyzed by resorting to a bidimensional color plot presenting the variation of the reradiated field both in frequency and spatial domain. The guidelines illustrated by the proposed examples can be easily applied to other antenna architectures.
2014
Genovesi, Simone; Costa, Filippo; Monorchio, Agostino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/669094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 144
  • ???jsp.display-item.citation.isi??? 124
social impact