This study aims to investigate the performances of a near surface repository subject to fuel burning occurring simultaneously or subsequently to a large commercial aircraft impact. Specifically the thermal effects caused by a Boeing-747 crushing (considered like “beyond design basis accident”) are studied. An important part of this study is the analysis of the possible (thermo-mechanical) degradation effects, as dehydration, degasification, pressurization, etc. that the concrete may undergo, particularly in the case of prolonged fire, and of the resistance of structure itself in this condition. Conservative assumptions and restrictions have been made with regard to the fire scenario, the maximum temperature of which is calculated on the basis of the fuel airplane amount, the normal impact, the variation of the material properties along with the temperature as well the damaging phenomena of concrete. The airplane impact load, calculated with the Riera approach, and the maximum temperature, reached during the fuel combustion, are used as input (boundary condition) in the numerical simulations performed by MARC© code. The obtained results showed that a repository wall thickness, ranging from 0.6 to 0.9 m, is not sufficient to prevent the local penetration of wall. To reduce the computational cost, the analyses have been made only on a half part of the structure, highlighting the dominance of thermal effects. Despite the ongoing concrete degradation phenomena, the overall integrity of the repository seemed to be guaranteed as well as the containment and the confinement of radioactive waste.

Safety performance of a near surface repository subject to a fuel burning

LO FRANO, ROSA;FORASASSI, GIUSEPPE
2015-01-01

Abstract

This study aims to investigate the performances of a near surface repository subject to fuel burning occurring simultaneously or subsequently to a large commercial aircraft impact. Specifically the thermal effects caused by a Boeing-747 crushing (considered like “beyond design basis accident”) are studied. An important part of this study is the analysis of the possible (thermo-mechanical) degradation effects, as dehydration, degasification, pressurization, etc. that the concrete may undergo, particularly in the case of prolonged fire, and of the resistance of structure itself in this condition. Conservative assumptions and restrictions have been made with regard to the fire scenario, the maximum temperature of which is calculated on the basis of the fuel airplane amount, the normal impact, the variation of the material properties along with the temperature as well the damaging phenomena of concrete. The airplane impact load, calculated with the Riera approach, and the maximum temperature, reached during the fuel combustion, are used as input (boundary condition) in the numerical simulations performed by MARC© code. The obtained results showed that a repository wall thickness, ranging from 0.6 to 0.9 m, is not sufficient to prevent the local penetration of wall. To reduce the computational cost, the analyses have been made only on a half part of the structure, highlighting the dominance of thermal effects. Despite the ongoing concrete degradation phenomena, the overall integrity of the repository seemed to be guaranteed as well as the containment and the confinement of radioactive waste.
File in questo prodotto:
File Dimensione Formato  
ICONE23-1440- final.pdf

solo utenti autorizzati

Descrizione: Paper
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/673879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact