The ac pyroelectric response of a number of differently poled polyvinylidene fluoride films has been measured while the temperature was varied at a constant rate ∼5 °C/min from room temperature to near the melting temperature. The response first increases with increasing temperature, which is attributed to an increase of the thermal expansion coefficient and eventually decreases due to melting and/or loss of electric dipole orientation. The details of the temperature dependence are influenced in a reproducible manner by the poling variables, especially the poling temperature. The measurement is therefore proposed as a way of evaluating the effect of processing variables on the thermal stability of the piezoelectric and pyroelectric properties.
Method of evaluating the thermal stability of the pyroelectric properties of polyvinylidene fluoride: effects of poling temperature and field
DE ROSSI, DANILO EMILIO;
1982-01-01
Abstract
The ac pyroelectric response of a number of differently poled polyvinylidene fluoride films has been measured while the temperature was varied at a constant rate ∼5 °C/min from room temperature to near the melting temperature. The response first increases with increasing temperature, which is attributed to an increase of the thermal expansion coefficient and eventually decreases due to melting and/or loss of electric dipole orientation. The details of the temperature dependence are influenced in a reproducible manner by the poling variables, especially the poling temperature. The measurement is therefore proposed as a way of evaluating the effect of processing variables on the thermal stability of the piezoelectric and pyroelectric properties.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.