Understanding the mechanisms that enable the conversion of the explosive release of magnetic energy into the electron energization that is experimentally observed in space and laboratory plasmas represents a long-standing question in the study of magnetic reconnection. We present a test particle model able to follow the dynamics of the electron guiding centers in the presence of the electromagnetic fields characterizing a non-steady-state, three-dimensional magnetohydrodynamic (3D-MHD) description of magnetic reconnection. The resulting electron equations, based on a relativistic Hamiltonian formulation of the particle dynamics, have been implemented in a code that evolves the spatial position and the velocity of the electrons according to the fields obtained by the numerical solutions of a two-fluid reconnection model. By the calculation of the electron distribution function in the phase space, the electron kinetic moments can be obtained with a δf technique particularly suitable during the early stages of the reconnection process, which can be replaced by a full-f approach in the nonlinear reconnection phase. Thanks to its capability to reproduce the electron response in a quite realistic reconnection configuration, this numerical tool represents a new instrument for the investigation of the nonlinear electron dynamics in particularly complex reconnection regions, such as those characterized by magnetic field line stochasticity.

A test electron model for the study of three dimensional magnetic reconnection effects.

PERONA, ANNA;
2014-01-01

Abstract

Understanding the mechanisms that enable the conversion of the explosive release of magnetic energy into the electron energization that is experimentally observed in space and laboratory plasmas represents a long-standing question in the study of magnetic reconnection. We present a test particle model able to follow the dynamics of the electron guiding centers in the presence of the electromagnetic fields characterizing a non-steady-state, three-dimensional magnetohydrodynamic (3D-MHD) description of magnetic reconnection. The resulting electron equations, based on a relativistic Hamiltonian formulation of the particle dynamics, have been implemented in a code that evolves the spatial position and the velocity of the electrons according to the fields obtained by the numerical solutions of a two-fluid reconnection model. By the calculation of the electron distribution function in the phase space, the electron kinetic moments can be obtained with a δf technique particularly suitable during the early stages of the reconnection process, which can be replaced by a full-f approach in the nonlinear reconnection phase. Thanks to its capability to reproduce the electron response in a quite realistic reconnection configuration, this numerical tool represents a new instrument for the investigation of the nonlinear electron dynamics in particularly complex reconnection regions, such as those characterized by magnetic field line stochasticity.
2014
Perona, Anna; Borgogno, D.; Eriksson, L. G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/690676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact