In the present work we report on the spectroscopic properties of the Ce3+ ion in BaY2F8 single crystals. The absorption and excitation spectra of the emission centered at 340 nm have been measured in the temperature range 15-300 K. The 340 nm emission consists of two broad partially overlapping bands, peaking at 324 and 347 nm (at 15 K), respectively. The full width at half maximum is about 0.5 eV at room temperature. The absorption spectrum of the lowest in energy component of the f --> d transition of Ce3+ reveals at low temperature a marked vibronic structure. High resolution (0.02 cm(-1)) Fourier transform infrared spectroscopy in the wave number range 500-5000 cm(-1) and in the temperature range 9-300 K has been exploited to monitor the f level splitting. The absorption transitions from the three Stark components of the F-2(5/2) manifold to the four of the F-2(7/2) one, have been monitored in the wave number range 2000-3400 cm(-1) . The wave number separation at 9 K between the lowest level of the ground F-2(5/2) manifold and lowest one of the F-2 (7/2) manifold is found to be 2197.47 cm(-1) in good agreement with the splitting detected between the two components of the d --> f emission.

Optical spectroscopy of Ce3+ ions in BaY2F8 single crystals

TONCELLI, ALESSANDRA;TONELLI, MAURO
2002-01-01

Abstract

In the present work we report on the spectroscopic properties of the Ce3+ ion in BaY2F8 single crystals. The absorption and excitation spectra of the emission centered at 340 nm have been measured in the temperature range 15-300 K. The 340 nm emission consists of two broad partially overlapping bands, peaking at 324 and 347 nm (at 15 K), respectively. The full width at half maximum is about 0.5 eV at room temperature. The absorption spectrum of the lowest in energy component of the f --> d transition of Ce3+ reveals at low temperature a marked vibronic structure. High resolution (0.02 cm(-1)) Fourier transform infrared spectroscopy in the wave number range 500-5000 cm(-1) and in the temperature range 9-300 K has been exploited to monitor the f level splitting. The absorption transitions from the three Stark components of the F-2(5/2) manifold to the four of the F-2(7/2) one, have been monitored in the wave number range 2000-3400 cm(-1) . The wave number separation at 9 K between the lowest level of the ground F-2(5/2) manifold and lowest one of the F-2 (7/2) manifold is found to be 2197.47 cm(-1) in good agreement with the splitting detected between the two components of the d --> f emission.
2002
Francini, R; Pinelli, S; Baraldi, A; Capelletti, R; Sani, E; Toncelli, Alessandra; Tonelli, Mauro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/70068
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact