In this paper we consider the n dimensional Navier-Stokes equations and we prove a new regularity criterion for weak solutions. More precisely, if n = 3,4 we show that the “smallness” of at least n-1 components of the velocity in L^infty(0,T;L_w(R^n)) is sufficient to ensure regularity of the weak solutions.

A note on regularity of weak solutions of the Navier-Stokes equations in R^n

BERSELLI, LUIGI CARLO
2002-01-01

Abstract

In this paper we consider the n dimensional Navier-Stokes equations and we prove a new regularity criterion for weak solutions. More precisely, if n = 3,4 we show that the “smallness” of at least n-1 components of the velocity in L^infty(0,T;L_w(R^n)) is sufficient to ensure regularity of the weak solutions.
2002
Berselli, LUIGI CARLO
File in questo prodotto:
File Dimensione Formato  
JJM2002-new.pdf

accesso aperto

Descrizione: versione della rivista, open acces
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/70369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact