In this paper we consider the n dimensional Navier-Stokes equations and we prove a new regularity criterion for weak solutions. More precisely, if n = 3,4 we show that the “smallness” of at least n-1 components of the velocity in L^infty(0,T;L_w(R^n)) is sufficient to ensure regularity of the weak solutions.
A note on regularity of weak solutions of the Navier-Stokes equations in R^n
BERSELLI, LUIGI CARLO
2002-01-01
Abstract
In this paper we consider the n dimensional Navier-Stokes equations and we prove a new regularity criterion for weak solutions. More precisely, if n = 3,4 we show that the “smallness” of at least n-1 components of the velocity in L^infty(0,T;L_w(R^n)) is sufficient to ensure regularity of the weak solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JJM2002-new.pdf
accesso aperto
Descrizione: versione della rivista, open acces
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.