Methods for identifying neuromuscular response commonly assume time-invariant neuromuscular dynamics. However, neuromuscular dynamics are likely to change during realistic control scenarios. In a previous paper we presented a method for identifying time-varying neuromuscular dynamics based on a Recursive Least Squares (RLS) algorithm. To date, this method has only been validated in a Monte Carlo simulation study. This paper presents an experimental validation of the same method. In the experiment, three different disturbance-rejection tasks were performed: a position task with the human instructed to minimize the stick deflection in front of an external force disturbance, a relax task with the instruction to relax the arm, and a time-varying task with the instruction to alternate between position and relax tasks. The position and relax tasks induce different time-invariant neuromuscular dynamics, whereas the time-varying task induces time-varying neuromuscular dynamics. The RLS-based method was used to estimate neuromuscular dynamics in the three tasks. The neuromuscular estimates were reliable both in time-invariant and time-varying tasks. These findings indicate that the RLS-based method can be used to estimate time-varying neuromuscular responses in human-in-the loop experiments.

Identifying time-varying neuromuscular response: experimental evaluation of a RLS-based algorithm

OLIVARI, MARIO;POLLINI, LORENZO
2015-01-01

Abstract

Methods for identifying neuromuscular response commonly assume time-invariant neuromuscular dynamics. However, neuromuscular dynamics are likely to change during realistic control scenarios. In a previous paper we presented a method for identifying time-varying neuromuscular dynamics based on a Recursive Least Squares (RLS) algorithm. To date, this method has only been validated in a Monte Carlo simulation study. This paper presents an experimental validation of the same method. In the experiment, three different disturbance-rejection tasks were performed: a position task with the human instructed to minimize the stick deflection in front of an external force disturbance, a relax task with the instruction to relax the arm, and a time-varying task with the instruction to alternate between position and relax tasks. The position and relax tasks induce different time-invariant neuromuscular dynamics, whereas the time-varying task induces time-varying neuromuscular dynamics. The RLS-based method was used to estimate neuromuscular dynamics in the three tasks. The neuromuscular estimates were reliable both in time-invariant and time-varying tasks. These findings indicate that the RLS-based method can be used to estimate time-varying neuromuscular responses in human-in-the loop experiments.
2015
9781624103377
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/708868
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact