The biology of the macro-element sulfur (S) is attracting an ever growing attention concerning cell physiology and human health. Sulfur metabolism works at the interplay between genetics and epigenetic as well as in the maintain of cell redox homeostasis. Indeed, unbalanced levels of S compounds in the body are actually under investigation as vulnerability factors and/or indicators of impaired cell oxidation state in a variety of human diseases. The purpose of this article is to overview some main S metabolic pathways in humans and their relevance in cell physiology and pathology. Since S is an essential nutrient for life, we first present its distribution and significance in the biosphere, focusing then on S metabolic fluxes which encompass S-containing amino acids (S-AAs), as well as sulfoconjugation, the synthesis and release of H2S together the formation of iron-sulfur cluster proteins. Despite the vastness of the topic, we would like to emphasize herein that the study of S networks in human pathology, especially in complex, multi-factorial disorders, deserves greater impulsion and deepening.

Sulfur Metabolism and Sulfur-Containing Amino Acids: I- Molecular Effectors

PALEGO, LIONELLA;BETTI, LAURA;GIANNACCINI, GINO
2015-01-01

Abstract

The biology of the macro-element sulfur (S) is attracting an ever growing attention concerning cell physiology and human health. Sulfur metabolism works at the interplay between genetics and epigenetic as well as in the maintain of cell redox homeostasis. Indeed, unbalanced levels of S compounds in the body are actually under investigation as vulnerability factors and/or indicators of impaired cell oxidation state in a variety of human diseases. The purpose of this article is to overview some main S metabolic pathways in humans and their relevance in cell physiology and pathology. Since S is an essential nutrient for life, we first present its distribution and significance in the biosphere, focusing then on S metabolic fluxes which encompass S-containing amino acids (S-AAs), as well as sulfoconjugation, the synthesis and release of H2S together the formation of iron-sulfur cluster proteins. Despite the vastness of the topic, we would like to emphasize herein that the study of S networks in human pathology, especially in complex, multi-factorial disorders, deserves greater impulsion and deepening.
2015
Palego, Lionella; Betti, Laura; Giannaccini, Gino
File in questo prodotto:
File Dimensione Formato  
palego, betti, giannaccini I.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/713464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact