Let A be a closed semialgebraic subset of Euclidean space of codimension at least one, and containing the origin 0 as a non-isolated point. We prove that, for every real s >= 1, there exists an algebraic set V which approximates A to order s at O. The special case s = 1 generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.

Local approximation of semialgebraic sets

FORTUNA, ELISABETTA;
2002-01-01

Abstract

Let A be a closed semialgebraic subset of Euclidean space of codimension at least one, and containing the origin 0 as a non-isolated point. We prove that, for every real s >= 1, there exists an algebraic set V which approximates A to order s at O. The special case s = 1 generalizes the result of the authors that every semialgebraic cone of codimension at least one is the tangent cone of an algebraic set.
2002
Ferrarotti, M; Fortuna, Elisabetta; Wilson, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/71492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact