Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbioses with the roots of most food crops, playing a key role in soil fertility and plant nutrition and health. The beneficial activity of AMF may be positively affected by bacterial communities living associated with mycorrhizal roots, spores and extraradical hyphae. Here, we investigated the diversity of bacterial communities associated with the spores of six AMF isolates, belonging to different genera and species and maintained for several generations in pot cultures with the same host plant, under the same environmental conditions and with the same soil. The occurrence of large bacterial communities intimately associated with spores of the AMF isolates was revealed by PCR denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of DGGE bands. Cluster and canonical correspondence analysis showed that the six AMF isolates displayed diverse bacterial community profiles unrelated with their taxonomic position, suggesting that each AMF isolate recruits on its spores a different microbiota. The 48 sequenced fragments were affiliated with Actinomycetales, Bacillales, Pseudomonadales, Burkholderiales, Rhizobiales and with Mollicutes-related endobacteria (Mre). For the first time, we report the occurrence of Mre in Funneliformis coronatum and Rhizophagus intraradices and sequences related to endobacteria of Mortierella elongata in F. coronatum and Funneliformis mosseae. The bacterial species identified are known to possess diverse and specific physiological characteristics and may play multifunctional roles affecting the differential performance of AMF isolates, in terms of infectivity and efficiency.

Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates

AGNOLUCCI, MONICA
Primo
;
BATTINI, FABIO
Secondo
;
CRISTANI, CATERINA
Penultimo
;
GIOVANNETTI, MANUELA
Ultimo
2015-01-01

Abstract

Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbioses with the roots of most food crops, playing a key role in soil fertility and plant nutrition and health. The beneficial activity of AMF may be positively affected by bacterial communities living associated with mycorrhizal roots, spores and extraradical hyphae. Here, we investigated the diversity of bacterial communities associated with the spores of six AMF isolates, belonging to different genera and species and maintained for several generations in pot cultures with the same host plant, under the same environmental conditions and with the same soil. The occurrence of large bacterial communities intimately associated with spores of the AMF isolates was revealed by PCR denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of DGGE bands. Cluster and canonical correspondence analysis showed that the six AMF isolates displayed diverse bacterial community profiles unrelated with their taxonomic position, suggesting that each AMF isolate recruits on its spores a different microbiota. The 48 sequenced fragments were affiliated with Actinomycetales, Bacillales, Pseudomonadales, Burkholderiales, Rhizobiales and with Mollicutes-related endobacteria (Mre). For the first time, we report the occurrence of Mre in Funneliformis coronatum and Rhizophagus intraradices and sequences related to endobacteria of Mortierella elongata in F. coronatum and Funneliformis mosseae. The bacterial species identified are known to possess diverse and specific physiological characteristics and may play multifunctional roles affecting the differential performance of AMF isolates, in terms of infectivity and efficiency.
2015
Agnolucci, Monica; Battini, Fabio; Cristani, Caterina; Giovannetti, Manuela
File in questo prodotto:
File Dimensione Formato  
Agnolucci et al., 2015 BFS.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Agnolucci et al., 2015 BFS.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 510.08 kB
Formato Adobe PDF
510.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/721469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 109
  • ???jsp.display-item.citation.isi??? 98
social impact