Racemic RS-4-(4-hydroxyphenyl)-2-butanol (rhododendrol, RD) was used as a topical skin-whitening agent until it was recently reported to induce leukoderma. We then showed that oxidation of RD with mushroom tyrosinase rapidly produces RD-quinone, which is quickly converted to RD-cyclic quinone and RD-hydroxy-p-quinone. In this study, we examined whether either or both of the enantiomers of RD can be oxidized by human tyrosinase. Using a chiral HPLC column, racemic RD was resolved optically to R(-)-RD and S(+)-RD enantiomers. In the presence of a catalytic amount of l-dopa, human tyrosinase, which can oxidize l-tyrosine but not d-tyrosine, was found to oxidize both R(-)- and S(+)-RD to give RD-catechol and its oxidation products. S(+)-RD was more effectively oxidized than l-tyrosine, while R(-)-RD was less effective. These results support the notion that the melanocyte toxicity of RD depends on its tyrosinase-catalyzed conversion to toxic quinones and the concomitant production of reactive oxygen species.

ADAM10 correlates with uveal melanoma metastasis and promotes in vitro invasion

ROSSELLO, ARMANDO;
2014

Abstract

Racemic RS-4-(4-hydroxyphenyl)-2-butanol (rhododendrol, RD) was used as a topical skin-whitening agent until it was recently reported to induce leukoderma. We then showed that oxidation of RD with mushroom tyrosinase rapidly produces RD-quinone, which is quickly converted to RD-cyclic quinone and RD-hydroxy-p-quinone. In this study, we examined whether either or both of the enantiomers of RD can be oxidized by human tyrosinase. Using a chiral HPLC column, racemic RD was resolved optically to R(-)-RD and S(+)-RD enantiomers. In the presence of a catalytic amount of l-dopa, human tyrosinase, which can oxidize l-tyrosine but not d-tyrosine, was found to oxidize both R(-)- and S(+)-RD to give RD-catechol and its oxidation products. S(+)-RD was more effectively oxidized than l-tyrosine, while R(-)-RD was less effective. These results support the notion that the melanocyte toxicity of RD depends on its tyrosinase-catalyzed conversion to toxic quinones and the concomitant production of reactive oxygen species.
Rosaria, Gangemi; Adriana, Amaro; Alice, Gino; Gaia, Barisione; Marina, Fabbi; Ulrich, Pfeffer; Antonella, Brizzolara; Paola, Queirolo; Sandra, Salvi; Simona, Boccardo; Marina, Gualco; Francesco, Spagnolo; Martine J., Jager; Carlo, Mosci; Rossello, Armando; Silvano, Ferrini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/738873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact