Much interest is continuing to grow in advanced interferometric synthetic aperture radar (SAR) methods for full 3-D imaging, particularly of volumetric forest scatterers. Multibaseline (MB) SAR tomographic elevation beam forming, i.e., spatial spectral estimation, is a promising technique in this framework. In this paper, the important effect of temporal decorrelation during the repeat-pass MB acquisition is tackled, analyzing the impact on superresolution (MUSIC) tomography with limited sparse data. Moreover, new tomographic methods robust to temporal decorrelation phenomena are proposed, exploiting the advanced differential tomography concept that produces 'space-time' signatures of scattering dynamics in the SAR cell. To this aim, a 2-D version of MUSIC and a generalized MUSIC method matched to nonline spectra are applied to decouple the nuisance temporal signal components in the spatial spectral estimation. Simulated analyses are reported for different geometrical and temporal parameters, showing that the new concept of restoring tomographic performance in temporal decorrelating forest scenarios through differential tomography is promising.
Temporal Decorrelation-Robust SAR Tomography
LOMBARDINI, FABRIZIO;CAI, FRANCESCO
2014-01-01
Abstract
Much interest is continuing to grow in advanced interferometric synthetic aperture radar (SAR) methods for full 3-D imaging, particularly of volumetric forest scatterers. Multibaseline (MB) SAR tomographic elevation beam forming, i.e., spatial spectral estimation, is a promising technique in this framework. In this paper, the important effect of temporal decorrelation during the repeat-pass MB acquisition is tackled, analyzing the impact on superresolution (MUSIC) tomography with limited sparse data. Moreover, new tomographic methods robust to temporal decorrelation phenomena are proposed, exploiting the advanced differential tomography concept that produces 'space-time' signatures of scattering dynamics in the SAR cell. To this aim, a 2-D version of MUSIC and a generalized MUSIC method matched to nonline spectra are applied to decouple the nuisance temporal signal components in the spatial spectral estimation. Simulated analyses are reported for different geometrical and temporal parameters, showing that the new concept of restoring tomographic performance in temporal decorrelating forest scenarios through differential tomography is promising.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.