We study mathematical and physical properties of a family of recently introduced, reduced-order approximate deconvolution models. We first show a connection between these models and the NS-Voigt model, and that NS-Voigt can be re-derived in the approximate deconvolution framework. We then study the energy balance and spectra of the model, and provide results of some turbulent flow computations that backs up the theory. Analysis of global attractors for the model is also provided, as is a detailed analysis of the Voigt model's treatment of pulsatile flow.

Analysis of a Reduced-Order Approximate Deconvolution Model and its interpretation as a Navier-Stokes-Voigt regularization

BERSELLI, LUIGI CARLO;
2016

Abstract

We study mathematical and physical properties of a family of recently introduced, reduced-order approximate deconvolution models. We first show a connection between these models and the NS-Voigt model, and that NS-Voigt can be re-derived in the approximate deconvolution framework. We then study the energy balance and spectra of the model, and provide results of some turbulent flow computations that backs up the theory. Analysis of global attractors for the model is also provided, as is a detailed analysis of the Voigt model's treatment of pulsatile flow.
Berselli, LUIGI CARLO; Kim T. Y., Rebholz L. G.
File in questo prodotto:
File Dimensione Formato  
1504.05050v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 633.3 kB
Formato Adobe PDF
633.3 kB Adobe PDF Visualizza/Apri
Berselli_744270.pdf

embargo fino al 30/06/2017

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 554.2 kB
Formato Adobe PDF
554.2 kB Adobe PDF Visualizza/Apri
DCDSB2016.pdf

solo utenti autorizzati

Descrizione: versione della rivista
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 717.39 kB
Formato Adobe PDF
717.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/744270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact