In the last decades, research in the orthodontic field has focused on the development of more comfortable and aesthetic appliances such as thermoformed aligners. Aligners have been used in orthodontics since the mid 20-century. Nonetheless, there is still not enough knowledge about how they interact with teeth. This paper is focused on the development of a Finite Element Method (FEM) model to be used in the optimization process of geometrical attributes of removable aligners. The presented method integrates Cone Beam Computed Tomography (CBCT) data and optical data in order to obtain a customized model of the dental structures, which include both crown and root shapes. The digital simulation has been focused on analyzing the behavior of three upper frontal teeth. Moreover, the analyses have been carried out by using different aligners’ thicknesses with the support of composite structures polymerized on teeth surfaces while simulating a 2 degrees rotation of an upper central incisor.

FEM Analysis of Bone-Ligaments-Tooth Models for Biomechanical Simulation of Individual Orthodontic Devices

SAVIGNANO, ROBERTO;BARONE, SANDRO;PAOLI, ALESSANDRO
;
RAZIONALE, ARMANDO VIVIANO
2014-01-01

Abstract

In the last decades, research in the orthodontic field has focused on the development of more comfortable and aesthetic appliances such as thermoformed aligners. Aligners have been used in orthodontics since the mid 20-century. Nonetheless, there is still not enough knowledge about how they interact with teeth. This paper is focused on the development of a Finite Element Method (FEM) model to be used in the optimization process of geometrical attributes of removable aligners. The presented method integrates Cone Beam Computed Tomography (CBCT) data and optical data in order to obtain a customized model of the dental structures, which include both crown and root shapes. The digital simulation has been focused on analyzing the behavior of three upper frontal teeth. Moreover, the analyses have been carried out by using different aligners’ thicknesses with the support of composite structures polymerized on teeth surfaces while simulating a 2 degrees rotation of an upper central incisor.
2014
978-079184628-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/744878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact