We consider a class of semi-linear dissipative hyperbolic equations in which the operator associated to the linear part has a nontrivial kernel. Under appropriate assumptions on the nonlinear term, we prove that all solutions decay to 0, as t → +∞, at least as fast as a suitable negative power of t. Moreover, we prove that this decay rate is optimal in the sense that there exists a nonempty open set of initial data for which the corresponding solutions decay exactly as that negative power of t. Our results are stated and proved in an abstract Hilbert space setting, and then applied to partial differential equations.

Optimal decay estimates for the general solution to a class of semi-linear dissipative hyperbolic equations,

GHISI, MARINA;GOBBINO, MASSIMO;
2016-01-01

Abstract

We consider a class of semi-linear dissipative hyperbolic equations in which the operator associated to the linear part has a nontrivial kernel. Under appropriate assumptions on the nonlinear term, we prove that all solutions decay to 0, as t → +∞, at least as fast as a suitable negative power of t. Moreover, we prove that this decay rate is optimal in the sense that there exists a nonempty open set of initial data for which the corresponding solutions decay exactly as that negative power of t. Our results are stated and proved in an abstract Hilbert space setting, and then applied to partial differential equations.
2016
Ghisi, Marina; Gobbino, Massimo; Haraux, A.
File in questo prodotto:
File Dimensione Formato  
JEMSGGH.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 313.63 kB
Formato Adobe PDF
313.63 kB Adobe PDF Visualizza/Apri
2016JEMS.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 369.03 kB
Formato Adobe PDF
369.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SolnLentesWeak.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 217.76 kB
Formato Adobe PDF
217.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/750134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact