A filamentous fungus was isolated from Tuber borchii Vitt. fruiting bodies, and it was identified as an Arthrinium phaeospermum (Corda) M.B. Ellis strain, an “endophyte” that forms various associations with healthy leaves, stems, and roots of plants. Molecular analysis confirmed the association of this filamentous fungus with the ascocarps of all collection sites in Salento, Apulia (South Italy). An in vitro symbiosis system between Cistus creticus L. and T. borchii was set up; A. phaeospermum appears to be able to promote mycorrhiza formation in Cistus seedlings, inducing primary root shortening and an increase of secondary roots, similar to the effect of Mycorrhization Helper Bacteria (MHB). Compartmented and uncompartmented bioassays were carried out to investigate the effects of exudates/volatiles released by the truffle-hosted fungus on root architecture; the results showed root shortening in compartmented bioassay suggesting that volatiles released by the fungus alone are sufficient to alter root morphology in early phase of interaction before the mycorrhiza formation. The first evidence for an influence of a truffle-hosted fungus on ectomycorrhizal symbiosis establishment is reported

Arthrinium phaeospermum isolated from Tuber borchii ascomata: the first evidence for a “Mycorrhization Helper Fungus”?

SORCE, CARLO;LORENZI, ROBERTO;
2015-01-01

Abstract

A filamentous fungus was isolated from Tuber borchii Vitt. fruiting bodies, and it was identified as an Arthrinium phaeospermum (Corda) M.B. Ellis strain, an “endophyte” that forms various associations with healthy leaves, stems, and roots of plants. Molecular analysis confirmed the association of this filamentous fungus with the ascocarps of all collection sites in Salento, Apulia (South Italy). An in vitro symbiosis system between Cistus creticus L. and T. borchii was set up; A. phaeospermum appears to be able to promote mycorrhiza formation in Cistus seedlings, inducing primary root shortening and an increase of secondary roots, similar to the effect of Mycorrhization Helper Bacteria (MHB). Compartmented and uncompartmented bioassays were carried out to investigate the effects of exudates/volatiles released by the truffle-hosted fungus on root architecture; the results showed root shortening in compartmented bioassay suggesting that volatiles released by the fungus alone are sufficient to alter root morphology in early phase of interaction before the mycorrhiza formation. The first evidence for an influence of a truffle-hosted fungus on ectomycorrhizal symbiosis establishment is reported
2015
Sabella, Erika; Nutricati, Eliana; Aprile, Alessio; Miceli, Antonio; Sorce, Carlo; Lorenzi, Roberto; De Bellis, Luigi
File in questo prodotto:
File Dimensione Formato  
10.1007_s11557-015-1083-6.pdf

solo utenti autorizzati

Descrizione: articolo principale completo
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Postprint ARPI.pdf

Open Access dal 26/01/2020

Descrizione: articolo principale completo
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/750786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact