The present study reports evidence of the pleiotropic effects caused by the insertion of the rat glucocorticoid receptor (GR) into the genome of Nicotiana langsdorffii. Transgenic N. langsdorffii-GR plants and the wild-type genotypes were analysed for their phenotypic and physiological characteristics. The integration of the GR gene affected flowering, growth habit, leaf morphology and stomatal pattern. Furthermore, GR plants showed an increased tolerance to heavy metal, drought and heat stress as evidenced by electrolyte leakage and by cell dedifferentiation and differentiation capability after recovery from stress treatments. We also monitored the establishment of the beneficial symbiosis between transgenic plants and the mycorrhizal fungus Funneliformis mosseae whose presymbiotic growth was significantly reduced by root exudates of N. langsdorffii-GR plants. The observed pleiotropic responses of transgenic plants may be a consequence of the hormonal imbalance, putatively due to the interaction of the GR receptor with the host genetic background. Our findings suggest that N. langsdorffii-GR plants can be used as a functional model system for the study of plant responses to a series of environmental stimuli.
The rat glucocorticoid receptor integration in Nicotiana langsdorffii genome affects plant responses to abiotic stresses and to arbuscular mycorrhizal symbiosis
RUFFINI CASTIGLIONE, MONICA;TURRINI, ALESSANDRA;GIOVANNETTI, MANUELAPenultimo
;
2015-01-01
Abstract
The present study reports evidence of the pleiotropic effects caused by the insertion of the rat glucocorticoid receptor (GR) into the genome of Nicotiana langsdorffii. Transgenic N. langsdorffii-GR plants and the wild-type genotypes were analysed for their phenotypic and physiological characteristics. The integration of the GR gene affected flowering, growth habit, leaf morphology and stomatal pattern. Furthermore, GR plants showed an increased tolerance to heavy metal, drought and heat stress as evidenced by electrolyte leakage and by cell dedifferentiation and differentiation capability after recovery from stress treatments. We also monitored the establishment of the beneficial symbiosis between transgenic plants and the mycorrhizal fungus Funneliformis mosseae whose presymbiotic growth was significantly reduced by root exudates of N. langsdorffii-GR plants. The observed pleiotropic responses of transgenic plants may be a consequence of the hormonal imbalance, putatively due to the interaction of the GR receptor with the host genetic background. Our findings suggest that N. langsdorffii-GR plants can be used as a functional model system for the study of plant responses to a series of environmental stimuli.File | Dimensione | Formato | |
---|---|---|---|
2015_Plant Biotech Reports_Bogani GR plants.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2015 Nicotiana GR.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
882.78 kB
Formato
Adobe PDF
|
882.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.