We show existence and uniqueness of steady-state solutions to the equations of generalized Newtonian liquids of shear-thinning type in an unbounded region that includes semi-infinite cylinders of constant cross-section (pipeline system). This result is established under the assumption that the datum (flow-rate) is sufficiently small. The main feature of our approach is the proof of a “global compactness” property of the sequence of approximating solutions.

Steady-state flow of a shear-thinning liquid in an unbounded pipeline system

GRISANTI, CARLO ROMANO
2015

Abstract

We show existence and uniqueness of steady-state solutions to the equations of generalized Newtonian liquids of shear-thinning type in an unbounded region that includes semi-infinite cylinders of constant cross-section (pipeline system). This result is established under the assumption that the datum (flow-rate) is sufficiently small. The main feature of our approach is the proof of a “global compactness” property of the sequence of approximating solutions.
Galdi, Giovanni P.; Grisanti, CARLO ROMANO
File in questo prodotto:
File Dimensione Formato  
anly-2014-1297.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 533.99 kB
Formato Adobe PDF
533.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/753177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact