The Perspective Reformulation (PR) of a Mixed-Integer NonLinear Program with semi-continuous variables is obtained by replacing each term in the (separable) objective function with its convex envelope. Solving the corresponding continuous relaxation requires appropriate techniques. Under some rather restrictive assumptions, the Projected PR (P^2R) can be defined where the integer variables are eliminated by projecting the solution set onto the space of the continuous variables only. This approach produces a simple piecewise-convex problem with the same structure as the original one; however, this prevents the use of general-purpose solvers, in that some variables are then only implicitly represented in the formulation. We show how to construct an Approximated Projected PR (AP^2R) whereby the projected formulation is "lifted" back to the original variable space, with each integer variable expressing one piece of the obtained piecewise-convex function. In some cases, this produces a reformulation of the original problem with exactly the same size and structure as the standard continuous relaxation, but providing substantially improved bounds. In the process we also substantially extend the approach beyond the original P^2R development by relaxing the requirement that the objective function be quadratic and the left endpoint of the domain of the variables be non-negative. While the AP^2R bound can be weaker than that of the PR, this approach can be applied in many more cases and allows direct use of off-the-shelf MINLP software; this is shown to be competitive with previously proposed approaches in some applications.

### Approximated Perspective Relaxations: a Project&Lift Approach

#### Abstract

The Perspective Reformulation (PR) of a Mixed-Integer NonLinear Program with semi-continuous variables is obtained by replacing each term in the (separable) objective function with its convex envelope. Solving the corresponding continuous relaxation requires appropriate techniques. Under some rather restrictive assumptions, the Projected PR (P^2R) can be defined where the integer variables are eliminated by projecting the solution set onto the space of the continuous variables only. This approach produces a simple piecewise-convex problem with the same structure as the original one; however, this prevents the use of general-purpose solvers, in that some variables are then only implicitly represented in the formulation. We show how to construct an Approximated Projected PR (AP^2R) whereby the projected formulation is "lifted" back to the original variable space, with each integer variable expressing one piece of the obtained piecewise-convex function. In some cases, this produces a reformulation of the original problem with exactly the same size and structure as the standard continuous relaxation, but providing substantially improved bounds. In the process we also substantially extend the approach beyond the original P^2R development by relaxing the requirement that the objective function be quadratic and the left endpoint of the domain of the variables be non-negative. While the AP^2R bound can be weaker than that of the PR, this approach can be applied in many more cases and allows direct use of off-the-shelf MINLP software; this is shown to be competitive with previously proposed approaches in some applications.
##### Scheda breve Scheda completa Scheda completa (DC)
2016
Frangioni, Antonio; Furini, F.; Gentile, C.
File in questo prodotto:
File
AppProjectedPR.pdf

Open Access dal 01/05/2017

Descrizione: Author's accepted manuscript
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 406.76 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11568/753555`
• ND
• 22
• 18