Biological tissues are characterised by spatially distributed gradients, intricately linked with functions. It is widely accepted that ideal tissue engineered scaffolds should exhibit similar functional gradients to promote successful tissue regeneration. Focusing on bone, in previous work we proposed simple methods to obtain osteochondral functionally graded scaffolds (FGSs), starting from homogeneous suspensions of hydroxyapatite (HA) particles in gelatin solutions. With the main aim of developing an automated device to fabricate FGSs, this work is focused on designing a stirred tank to obtain homogeneous HA-gelatin suspensions. The HA particles transport within the gelatin solution was investigated through computational fluid dynamics (CFD) modelling. First, the steady-state flow field was solved for the continuous phase only. Then, it was used as a starting point for solving the multi-phase transient simulation. CFD results showed that the proposed tank geometry and setup allow for obtaining a homogeneous suspension of HA micro-particles within the gelatin solution.

CFD modelling of a mixing chamber for the realisation of functionally graded scaffolds

MATTEI, GIORGIO;VOZZI, GIOVANNI
2016-01-01

Abstract

Biological tissues are characterised by spatially distributed gradients, intricately linked with functions. It is widely accepted that ideal tissue engineered scaffolds should exhibit similar functional gradients to promote successful tissue regeneration. Focusing on bone, in previous work we proposed simple methods to obtain osteochondral functionally graded scaffolds (FGSs), starting from homogeneous suspensions of hydroxyapatite (HA) particles in gelatin solutions. With the main aim of developing an automated device to fabricate FGSs, this work is focused on designing a stirred tank to obtain homogeneous HA-gelatin suspensions. The HA particles transport within the gelatin solution was investigated through computational fluid dynamics (CFD) modelling. First, the steady-state flow field was solved for the continuous phase only. Then, it was used as a starting point for solving the multi-phase transient simulation. CFD results showed that the proposed tank geometry and setup allow for obtaining a homogeneous suspension of HA micro-particles within the gelatin solution.
2016
Mattei, Giorgio; Vozzi, Giovanni
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0098135415002823-main.pdf

accesso aperto

Descrizione: accepted manuscript
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 457.57 kB
Formato Adobe PDF
457.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/754414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact