The experimental effort required to develop, damage tolerant, aerospace composite structures could be significantly reduced if reliable numerical simulations were used to perform engineering studies of complex damaged structures. Finite element (FE) simulations of impact damaged structures typically follow a sequential approach that require large computational resources to reproduce complex damage scenarios. A numerical tool capable to reconstruct such scenarios using data from previous impact simulations or NDI could noticeably improve the simulation workflow for damaged composite structures. The paper proposes a method to inizialize the damage variables in numerical analyses aimed at assessing damage propagation, and that are potentially able to evaluate the residual strength of damaged structures. The approach is developed within FE software ABAQUS, and uses SDVINI subroutine to initialize damage variables defined by a user-material-subroutine (UMAT), that provides the constitutive models of the lamina and of the interlaminar layers. Albeit the proposed technique might deal with both inter-laminar and intra-laminar damage, the paper is focused on delaminations. A user defined traction-separation law is coded in an UMAT that endows ABAQUS cohesive elements with damage initialization capabilities. Then, results of test cases, of increasing complexity, are presented in order to assess the damage initialization procedure and verify the performances of its different operating modes. Two test-cases are based on plate-like specimens for which literature data exist: the first is relevant to a circular artificial delamination while the second presents multiple delaminations caused by an impact and measured via NDI techniques. The last test-case is a stiffened panel which incorporates the typical complexities of aerospace structures, but is still tractable with the sequential simulation approach whose results are used as a term of comparison.

Damage initialization techniques for non-sequential FE propagation analysis of delaminations in composite aerospace structures

FANTERIA, DANIELE;
2015-01-01

Abstract

The experimental effort required to develop, damage tolerant, aerospace composite structures could be significantly reduced if reliable numerical simulations were used to perform engineering studies of complex damaged structures. Finite element (FE) simulations of impact damaged structures typically follow a sequential approach that require large computational resources to reproduce complex damage scenarios. A numerical tool capable to reconstruct such scenarios using data from previous impact simulations or NDI could noticeably improve the simulation workflow for damaged composite structures. The paper proposes a method to inizialize the damage variables in numerical analyses aimed at assessing damage propagation, and that are potentially able to evaluate the residual strength of damaged structures. The approach is developed within FE software ABAQUS, and uses SDVINI subroutine to initialize damage variables defined by a user-material-subroutine (UMAT), that provides the constitutive models of the lamina and of the interlaminar layers. Albeit the proposed technique might deal with both inter-laminar and intra-laminar damage, the paper is focused on delaminations. A user defined traction-separation law is coded in an UMAT that endows ABAQUS cohesive elements with damage initialization capabilities. Then, results of test cases, of increasing complexity, are presented in order to assess the damage initialization procedure and verify the performances of its different operating modes. Two test-cases are based on plate-like specimens for which literature data exist: the first is relevant to a circular artificial delamination while the second presents multiple delaminations caused by an impact and measured via NDI techniques. The last test-case is a stiffened panel which incorporates the typical complexities of aerospace structures, but is still tractable with the sequential simulation approach whose results are used as a term of comparison.
2015
Panettieri, Enrico; Fanteria, Daniele; Firrincieli, A.
File in questo prodotto:
File Dimensione Formato  
art:10.1007/s11012-015-0214-0.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Panettieri-Fanteria-Firrincieli_Meccanica DRAF submitted.pdf

Open Access dal 02/01/2017

Descrizione: Versione originale sottomessa
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 17.17 MB
Formato Adobe PDF
17.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/755332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact