We investigate the ground-state properties of trapped fermion systems described by the Hubbard model with an external confining potential. We discuss the universal behaviors of systems in different regimes: from few particles, i.e., in dilute regimes, to the trap thermodynamic limit. The asymptotic trap-size (TS) dependence in the dilute regime (increasing the trap size l keeping the particle number N fixed) is described by a universal TS scaling controlled by the dilute fixed point associated with the metal-to-vacuum quantum transition. This scaling behavior is numerically checked by DMRG simulations of the one-dimensional (1D) Hubbard model. In particular, the particle density and its correlations show crossovers among different regimes: for strongly repulsive interactions they approach those of a spinless Fermi gas, for weak interactions those of a free Fermi gas, and for strongly attractive interactions they match those of a gas of hard-core bosonic molecules. The large-N limit keeping the ratio N/l fixed corresponds to a 1D trap thermodynamic limit. We address issues related to the accuracy of the local density approximation (LDA). We show that the particle density approaches its LDA in the large-l limit. When the trapped system is in the metallic phase, corrections at finite l are O(l(-1)) and oscillating around the center of the trap. They become significantly larger at the boundary of the fermion cloud, where they get suppressed as O(l(-1/3)) only. This anomalous behavior arises from the nontrivial scaling at the metal-to-vacuum transition occurring at the boundaries of the fermion cloud.

Universal quantum behavior of interacting fermions in one-dimensional traps: From few particles to the trap thermodynamic limit

VICARI, ETTORE
2014-01-01

Abstract

We investigate the ground-state properties of trapped fermion systems described by the Hubbard model with an external confining potential. We discuss the universal behaviors of systems in different regimes: from few particles, i.e., in dilute regimes, to the trap thermodynamic limit. The asymptotic trap-size (TS) dependence in the dilute regime (increasing the trap size l keeping the particle number N fixed) is described by a universal TS scaling controlled by the dilute fixed point associated with the metal-to-vacuum quantum transition. This scaling behavior is numerically checked by DMRG simulations of the one-dimensional (1D) Hubbard model. In particular, the particle density and its correlations show crossovers among different regimes: for strongly repulsive interactions they approach those of a spinless Fermi gas, for weak interactions those of a free Fermi gas, and for strongly attractive interactions they match those of a gas of hard-core bosonic molecules. The large-N limit keeping the ratio N/l fixed corresponds to a 1D trap thermodynamic limit. We address issues related to the accuracy of the local density approximation (LDA). We show that the particle density approaches its LDA in the large-l limit. When the trapped system is in the metallic phase, corrections at finite l are O(l(-1)) and oscillating around the center of the trap. They become significantly larger at the boundary of the fermion cloud, where they get suppressed as O(l(-1/3)) only. This anomalous behavior arises from the nontrivial scaling at the metal-to-vacuum transition occurring at the boundaries of the fermion cloud.
2014
Angelone, Adriano; Campostrini, Massimo; Vicari, Ettore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/755604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact